
A Case Study in

Computing Word Co-occurrence Matrices with
MapReduce

Minh Phan
Student Number: S3335814

Big Data Processing
RMIT University

Abstract —This case study attempted to investigate the
scalability efficiency of the two popular words co-occurrence
algorithms: “pairs” and “stripes”. The experiment was
designed to compare the performance of the two algorithms
in the context the following changing variables: data size,
number of mappers, number of reducers and number of
slave nodes employed. The metric of measuring efficiency is
time. The case study concludes that “stripes” algorithm is
more efficient in implementing words co-occurrence.

Keywords—scalability, pairs, stripes, co-occurrence.

I. INTRODUCTION
The words co-occurrence matrices has multiple

applications, especially in the age of growing web
contents. The most popular design pattern approaches for
constructing co-occurrence matrices are the “pairs” and
the “stripes” approaches [1] . This case study was designed
to investigate the question: which approach is better in
terms of time efficiency. In addition, the experiment
investigated how cost effective the two approaches are by
comparing their efficiency with different numbers of
slaves nodes. The experiment was conducted using the
Common Crawl dataset from Amazon Web Service
(AWS).

II. MAPREDUCE

A. Input
Both of the approaches reads in the same input with

the key as Text and the value as ArchiveReader, which
help iterate through the files from the Common Crawl
data.

B. “Pairs” approach
The “pairs” approach mappers output object MyPair

as key and LongWritable as value. The reducers also have
MyPair and LongWritable as “key-value” pairs of the
outputs.

C. “Stripes” approach
The “Stripes” approach mappers output Text as key

and MapWritable as value. The reducers al so have
TextPair and MapWritable as “key-value” pairs of the
outputs.

III. METHODOLOGY

The experiment was set up to compare the time
efficiency of the two design patterns using the Common
Crawl dataset. The algorithms were tested against
variables including: data size, number of mappers,
number of reducers and number of slave nodes. The
purpose of the experiment was to determine which
approach is better for scaling. The context of
co-occurrence is the closest 2 words in the same sentence.

A. Metric of efficiency measuring
The total running time of each algorithm was recorded

in seconds in order to compare the efficiency.

In addition, the cost effectiveness of each approaches
is inferred from the performance with the increasing
number of slave nodes.

B. Testing environments
● Data size: a range from 2 files (201.53 mb) to 10

files (1014 mb) of the Common Crawl data set
was used. Due to the nature of the Common
Crawl data file, each file will use its own
mapper.

○ Case 1: 1 reducer and 1 master node.
○ Case 2: 3 reducers, 1master node and 8

slave nodes.
● Numbers of mappers: the number of mappers

tested were 1, 2, 4, 6, 8 and 10; with the file size
of 101.52mb and 1 reducer.

● Number of reducers: the number of reducers
tested were 1, 2, 3, 6, 18 and 54; with the file
size of 101.52mb and 1 mapper.

● Numbers of slave nodes: the numbers of slave
nodes tested was 2, 4, 6, 8 and 10 nodes; with 2
cases

○ Case 1: 101.52 mb - 1 input file.
○ Case 2: 406.89 mb – 4 input files.

IV. RESULTS AND DISCUSSION

A. Results
The results of each testing categories were recorded in

graphs forms; for details see Appendix 1.

● Data size: Figure 1.1 and 1.2

Minh Phan, s3335814

● Numbers of mappers: Figure 1.3

● Numbers of reducers: Figure 1.4

● Numbers of slave nodes: Figure 1.5, 1.6

B. Discussion
Overall, we can observe that the “stripe” approach

performs better than the “pairs” approach in all the testing
environments.

 As the size of the inputs increases, the “stripes”
approach has lower running time than the “pairs” one; this
suggests that the “stripes” approach scales better in terms
of data size (Figure 1.1). However, when they were
running on just the master node (Figure 1.2), the “stripes”
approach has a much smaller rate of increase in executing
time than the “pairs” approach; this aligns with the
conclusion drawn from the experiment proposed by J.
Lin, and C, Dyer [1] .

As the number of mappers was forced to increases, the
input file was split into more parts and transmitted to
different mappers; this was done with a small input file of
101.52 mb. In addition, the intermediate outputs were
transferred back to 1 single reducer; this results in an
increase in data transmitting across the network, hence
decreasing the time efficiency in both approaches (Figure
1.2).

As the number of reducers was forced to increases, at
first, the running times in both approaches decrease
.However, as intermediate outputs were transferred from a
single mapper to many reducers; this may result in an
increase in data transmitting across the network, hence
decreasing the time efficiency, in the later part of the
plot(Figure 1.3).

We can see that both of the approaches do worse in
term in time efficiency as the number of mappers and
reducers increases; this is the result of insufficient use of
resources. The data was forced to split into smaller blocks
and transferred across the network, while a single mapper
or reducer could process the data block; this violates the
big data processing principle of moving the codes to the
data and minimising transfer of the data [1] .

As the number of slave nodes increase, we can
observe a clear increase in efficiency in both approaches.
The “stripes” approach appears to take less time in all the
cases. Furthermore, the rate in increase in time efficiency,
decrease in time, appears to plateau after a certain amount
of nodes reached (Figure 1.4, 1.5).

In both cases, the “stripes” approach performs better.
In the larger dataset, the “stripes” approach appears to
achieve a plateau of time decrease after 4 slave nodes;
while the “pairs” approach achieves a plateau after 8 slave
nodes .

V. CONCLUSION

We have learnt that excessive data transfer will
significantly reduce the time efficiency of any algorithms.
We can also observe that, the employment of more
resources have a positive impact in time efficiency.
However, the impact of more resources becomes less
significant after a certain amount of nodes.

The results of the experiments suggested that the
”stripes” approach has a better scalability efficiency in
terms of time and cost.

The “stripes” approach takes less time to complete
tasks in all cases. Besides, the “stripes” approach seems to
reach this point relatively “maximum” of efficiency with
less nodes than the “pairs” counterpart. In terms of
costing, this showed that the “stripes” approach has better
value for money, since less resources were required.

In conclusion, in order to maximise time efficiency
and minimise running cost, we are required to understand
not only which algorithm is better, but also how each
algorithm thrives in practical context.

REFERENCE
[1] J. Lin, and C, Dyer. Data-intensive Text Processing with

MapReduce . San Rafael, Calif: Morgan & Claypool, 2010.

APPENDIX 1

FIGURE 1.1

The effect of data size to time efficiency- 8 nodes

FIGURE 1.2

The effect of data size to time efficiency- 1 node

FIGURE 1.3

The effect of number of mappers to time efficiency

FIGURE 1.4

The effect of number of reducers to time efficiency

 FIGURE 1.5

The effect of number of slave nodes to time efficiency-101mb

FIGURE 1.6

The effect of number of slave nodes to time efficiency- 408mb

.

TIME LOG

TABLE 2.1

Data size(MB) Stripes(secs) Pairs(secs)

201 331 457

407 445 518

611 712 969

813 840 1002

1014 934 1091

The effect of data size to time efficiency- 8 nodes .

TABLE 2.2

Data size(MB) Stripes(secs) Pairs(secs)

1 367 462

2 590 562

4 767 1132

6 834 2065

8 1072 2231

10 1337 2750

The effect of data size to time efficiency-1node

TABLE 2.3

Mappers Stripes(secs) Pairs(secs)

1 367 462

2 415 854

4 725 1052

6 1244 1570

8 1314 2135

10 1611 2671

The effect of number of mappers to time efficiency-1

reducer.

TABLE 2.3

Reducers Stripes (secs) Pairs(secs)

1 367 462

2 381 440

3 333 442

6 259 449

18 310 506

54 548 687

The effect of number of reducers to time efficiency-1

mapper.

TABLE 2.4

Nodes Stripes(secs) Pairs(secs)

2 330 446

4 309 433

6 301 430

8 297 421

10 279 427

The effect of number of slave nodes to time

efficiency-data size 101mb.

TABLE 2.5

Nodes Stripes(secs) Pairs(secs)

2 658 982

4 462 898

6 454 901

8 431 549

10 426 542

The effect of number of slave nodes to time

efficiency-data size 407mb.

