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1 Introduction

The objective of this project is to predict the revenue-related metric using the dataset provided
by the client via the Kaggle competition. This project has two phases. Phase I focuses on data
preprocessing and exploration, as covered in this report. We shall present model building in
Phase II. The rest of this report is organised as follows. Section 1 describes the data sets and
their attributes. Section 2 covers data pre-processing. In Section 3, we explore each attribute
and their inter-relationships. The last section presents a brief summary. Compiled from Jupyter
Notebook, this report contains both narratives and the Python codes used for data pre-processing
and exploration.

1.1 Data Sets

This dataset contains online advertising data where the target feature is a revenue-related metric
and the descriptive features are various advertising metrics and characteristics. Each row repre-
sents a website traffic record that comes from a specific country, company, and device type com-
bination. The dataset contains 30 days of training data and 5 days of test data. The training data
contains about 215K records and the test data contains about 31K records.

1.1.1 Target Feature

The target feature is a revenue-related metric. The variable is continous ranging from 0.000098 to
47.060000 in the traing data. The metric measures the website traffic.

1.1.2 Descriptive Features

The variable description is produced here from Advertising_Data_Description.pdf file:

• companyId: Company ID of record (categorical)

• countryId: Country ID of record (categorical)

• deviceType: Device type of record (categorical corresponding to desktop, mobile, tablet)

• day: Day of record (integer between 1 (oldest) and 30 for train, 31 and 35 (most recent) for
test)

• dow: Day of week of the record (categorical)
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• price1, price2, price3: Price combination for the record set by the company (numeric)

• ad_area: area of advertisement (normalized between 0 and 1)

• ad_ratio: ratio of advertisement’s length to its width (normalized between 0 and 1)

• requests, impression, cpc, ctr, viewability: Various metrics related to the record
(numeric)

• ratio1, ..., ratio5: ratio characteristics related to the record (normalized between 0 and
1)

• y (target feature): revenue-related metric (numeric)

Google ads metric explains:

requests: is counted whenever your site requests ads to be displayed.
impression: how often an ad is shown on Google and Google network.
cpc: cost per click.
ctr: click through rate, = clicks/ impressions.
viewability: portion of the ad that is seen be a user at the time.

2 Data Pro-processsing

2.1 Preliminaries

We read the training and test datasets from the file advertising_train.csv.

In [1]: import numpy as np

In [2]: import pandas as pd
import warnings
warnings.filterwarnings('ignore')

In [3]: ad=pd.read_csv("advertising_train.csv")

2.2 Data Cleaning and Transformation

In [4]: print(f"Dimension of the data set is {ad.shape} \n")
print(f"Data Types are: ")
print(ad.dtypes)

Dimension of the data set is (214128, 21)

Data Types are:
companyId int64
countryId int64
deviceType int64
day float64
dow object
price1 float64
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price2 float64
price3 float64
ad_area float64
ad_ratio float64
requests float64
impression float64
cpc float64
ctr float64
viewability float64
ratio1 float64
ratio2 float64
ratio3 float64
ratio4 float64
ratio5 float64
y float64
dtype: object

Firstly, we need to make sure the data types of the features are appropriate.
For categorical features:

In [5]: categoricalColumn = ['companyId', 'countryId', 'deviceType', 'dow']
for col in categoricalColumn: ad[col] = ad[col].astype('category')

We can remove the day variable since it doesnt have any predicting values.

In [6]: ad = ad.drop('day', axis=1)

In [7]: ad['impression'] = ad['impression'].astype('int64')

In [8]: print(ad.dtypes)

companyId category
countryId category
deviceType category
dow category
price1 float64
price2 float64
price3 float64
ad_area float64
ad_ratio float64
requests float64
impression int64
cpc float64
ctr float64
viewability float64
ratio1 float64
ratio2 float64
ratio3 float64

3



ratio4 float64
ratio5 float64
y float64
dtype: object

On surface, no attributes contain NaN values (though the missing values might be coded with
different labels) as shown in the code chunk.

In [9]: print(f"\nNumber of missing value for each feature:")
print(ad.isnull().sum())

Number of missing value for each feature:
companyId 0
countryId 0
deviceType 0
dow 0
price1 0
price2 0
price3 0
ad_area 0
ad_ratio 0
requests 0
impression 0
cpc 0
ctr 0
viewability 0
ratio1 0
ratio2 0
ratio3 0
ratio4 0
ratio5 0
y 0
dtype: int64

From Table 1 and 2 , we can observe a few problems.
Firstly, for ad_ration,ad_area, ratio2, ratio3, ratio4 and ratio5, the values are meant to be nor-

malised from 0 to 1. However, we can see that the max values of these values are larger then
1.

Secondly, ctr(click through) represents percentage , however we can see its maximum value is
2.00.

Lastly, the deviceType variables only has 3 options: mobile, tablet, desktop. However we
observed 4 options in table 3

In [10]: from IPython.display import display, HTML
display(HTML('<b>Table 1: Summary of continuous features</b>'))
display(ad.describe(include ='float64'))
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display(ad.describe(include ='int64'))

display(HTML('<b>Table 2: Summary of categorical (object) features</b>'))
display(ad.describe(include = 'category'))

<IPython.core.display.HTML object>

price1 price2 price3 ad_area \
count 214128.000000 214128.000000 214128.000000 214128.000000
mean 0.438229 0.630178 0.932436 4.724445
std 1.281403 1.481552 1.839991 6.273410
min 0.000000 0.000000 0.000000 0.000100
25% 0.000000 0.000000 0.000000 0.000100
50% 0.010000 0.090000 0.294800 0.000100
75% 0.190000 0.570000 0.985650 7.500000
max 14.690000 63.120000 78.900000 36.000000

ad_ratio requests cpc ctr \
count 214128.000000 2.141280e+05 214128.000000 214128.000000
mean 0.923402 8.678997e+03 0.177862 0.032921
std 0.482055 1.223472e+05 0.707260 0.092502
min 0.083330 0.000000e+00 0.000000 0.000000
25% 0.833330 0.000000e+00 0.000000 0.000000
50% 1.000000 1.470000e+02 0.015700 0.001700
75% 1.000000 1.633000e+03 0.125200 0.012000
max 5.000000 6.701924e+06 132.533900 2.000000

viewability ratio1 ratio2 ratio3 \
count 214128.000000 214128.000000 214128.000000 214128.000000
mean 0.377929 0.558284 0.491079 0.311646
std 0.365938 0.446955 0.414312 0.444088
min 0.000000 0.000000 0.000000 0.000000
25% 0.000000 0.000000 0.000000 0.000000
50% 0.331500 0.750000 0.627100 0.027600
75% 0.715900 1.000000 0.895700 1.000000
max 7.000000 1.000000 1.027000 1.500000

ratio4 ratio5 y
count 214128.000000 214128.000000 214128.000000
mean 0.131008 0.188300 0.847004
std 0.239758 0.297121 1.390593
min 0.000000 0.000000 0.000098
25% 0.000000 0.000000 0.150415
50% 0.000000 0.000000 0.419000
75% 0.163600 0.384700 0.959048
max 1.076900 1.200000 47.060000
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impression
count 2.141280e+05
mean 5.585714e+03
std 9.871334e+04
min 0.000000e+00
25% 0.000000e+00
50% 9.900000e+01
75% 1.058000e+03
max 6.100324e+06

<IPython.core.display.HTML object>

companyId countryId deviceType dow
count 214128 214128 214128 214128
unique 6 163 4 7
top 43 234 2 Saturday
freq 134655 21507 94827 35200

2.2.1 Continuous Features

As discussed in previous section, we need to investigate the ad_ratio,ad_area, ratio2, ratio3, ratio4
and ratio5 variables.

For the ad_ratio, ratio2, ratio3, ratio4 and ratio5 variables, majority of the observations have
values less than 1, therefore we can treat ones with ratio lager than 1 as possible mistakes and
remove them from the data sets.

In [11]: ad_removed = ad[ad.ratio2 <= 1]

In [12]: ad_removed = ad_removed[ad_removed.ratio3 <= 1]

In [13]: ad_removed = ad_removed[ad_removed.ratio4 <= 1]

In [14]: ad_removed = ad_removed[ad_removed.ratio5 <= 1]

In [15]: ad_removed = ad_removed[ad_removed.ad_ratio <= 1]

In [16]: ad_removed.describe()

Out[16]: price1 price2 price3 ad_area \
count 187561.000000 187561.000000 187561.000000 187561.000000
mean 0.454444 0.631557 0.918268 3.672070
std 1.312231 1.477399 1.806672 5.231608
min 0.000000 0.000000 0.000000 0.000100
25% 0.000000 0.000000 0.000000 0.000100
50% 0.010000 0.080000 0.283700 0.000100
75% 0.190000 0.570000 0.957300 7.500000
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max 14.690000 29.540000 29.544300 36.000000

ad_ratio requests impression cpc \
count 187561.000000 1.875610e+05 1.875610e+05 187561.000000
mean 0.824727 7.500860e+03 5.012452e+03 0.141920
std 0.292997 1.237876e+05 1.012706e+05 0.501185
min 0.083330 0.000000e+00 0.000000e+00 0.000000
25% 0.833330 0.000000e+00 0.000000e+00 0.000000
50% 1.000000 9.600000e+01 6.400000e+01 0.011700
75% 1.000000 1.202000e+03 7.860000e+02 0.101300
max 1.000000 6.701924e+06 6.100324e+06 50.938900

ctr viewability ratio1 ratio2 \
count 187561.000000 187561.000000 187561.000000 187561.000000
mean 0.035379 0.379390 0.544189 0.479616
std 0.095907 0.372985 0.451954 0.418858
min 0.000000 0.000000 0.000000 0.000000
25% 0.000000 0.000000 0.000000 0.000000
50% 0.001700 0.331700 0.733800 0.602500
75% 0.015300 0.727600 1.000000 0.897000
max 1.000000 7.000000 1.000000 1.000000

ratio3 ratio4 ratio5 y
count 187561.000000 187561.000000 187561.000000 187561.000000
mean 0.272145 0.136655 0.203209 0.870772
std 0.422794 0.240495 0.304442 1.445689
min 0.000000 0.000000 0.000000 0.000098
25% 0.000000 0.000000 0.000000 0.147222
50% 0.015300 0.000000 0.000000 0.417857
75% 0.572600 0.189500 0.440800 0.979310
max 1.000000 1.000000 1.000000 47.060000

After the removals of those observations we still have majority of the data left
With the variable ad_area, almost half of the value is larger than 1. This could potentially be

the result of the miss interpretations of length and width of the ad. For example if it was a banner
add on either sides of a page the width is more likely to be smaller than then length, hence value is
less than one. When the ad is in the bottom or the top of a page, its width is lager than the length,
hence the larger than 1 value. We’ll leave this variable for now and observe its graph later.

In [17]: (ad_removed['ad_area']>1).value_counts()/187561

Out[17]: False 0.564739
True 0.435261
Name: ad_area, dtype: float64

We also removed the observation that have ctr larger than 2 during the process.
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2.2.2 Categorical Features

All the categorical values appear to have the right set of values. However, the the deviceType,
there are only 3 device options, there are 4 unique values.

In [18]: ad_removed['deviceType'].value_counts()

Out[18]: 2 76169
1 73097
3 36348
5 1947
Name: deviceType, dtype: int64

The value 5 is the smallest value; this could be a way to communicate unknown device. We
can ignore these values since they contribute only about 1% of the remaining data.

In [19]: 2113/187561

Out[19]: 0.011265668235933909

In [20]: ad_removed['deviceType'] = ad_removed['deviceType'].astype('int64')

In [21]: ad_removed = ad_removed[ad_removed.deviceType <5]

In [22]: ad_removed['deviceType'] = ad_removed['deviceType'].astype('category')

In addtion, the variable viewability represent percetage of an ad is viewed therefore, all values
should be smaller than 1

In [23]: ad_removed = ad_removed[ad_removed.viewability <=1]

We also will check the uniue value of these categorical values, just in case

In [24]: for col in categoricalColumn:
print('Unique values for ' + col)
print(ad_removed[col].unique())
print('')

Unique values for companyId
[95, 43, 159, 40, 157, 126]
Categories (6, int64): [95, 43, 159, 40, 157, 126]

Unique values for countryId
[234, 57, 29, 70, 198, ..., 1, 92, 8, 217, 250]
Length: 163
Categories (163, int64): [234, 57, 29, 70, ..., 92, 8, 217, 250]

Unique values for deviceType
[1, 2, 3]
Categories (3, int64): [1, 2, 3]
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Unique values for dow
[Saturday, Sunday, Monday, Tuesday, Wednesday, Thursday, Friday]
Categories (7, object): [Saturday, Sunday, Monday, Tuesday, Wednesday, Thursday, Friday]

3 Data Exploration

3.1 Univariate Visualisation

For convenience, we defined two functions named BarPlot(x) and BoxHistogramPlot(x) for cat-
egorical and numerical features respectively. For given an input categorical column x, BarPlot(x)
returns a bar chart with percentage on top of each bar. A bar chart is useful to present the pro-
portions by categories. For given an input numerical column x, BoxHistogramPlot(x) plots a
histogram and a box plot. A histogram is useful to visualize the shape of the underlying distribu-
tion whereas A box plot tells the range of the attribute and helps detect any outliers. The following
chunk codes show how these function were defined using the numpy library and the matplotlib
library.

In [25]: import matplotlib.pyplot as plt
import seaborn as sns

sns.set(color_codes=True)

def BarPlot(x):
total = float(len(ad_removed))
ax = ad_removed[x].value_counts(normalize = True).plot(

kind = "bar", alpha = 0.5)

def BoxHistogramPlot(x):
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True,

gridspec_kw={"height_ratios": (.15, .85)})
sns.boxplot(x, ax=ax_box)
sns.distplot(x, ax=ax_hist)

ax_box.set(yticks=[])
sns.despine(ax=ax_hist)
sns.despine(ax=ax_box, left=True)
plt.show()

For companyId variable, majority of the data is from comnyId=43. It is hard to identify which
countries are the most popular based on the graph. The device 1 and 2 are used the most, they
are potentially desktop and mobile respectively. The data spread out quite evenly throughout the
week, with the weekend is slightly more .

In [26]: i = 1 # initialize figure labelling4)
for col in ['companyId', 'countryId', 'deviceType', 'dow']:
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plt.figure(figsize=(6,2))
plt.title("Figure " + str(i) + ": Bar Chart of " + col, fontsize = 12)
BarPlot(col)
plt.show()
i = i + 1
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In [27]: for col in ['price1', 'price2','price3','ad_area', 'ad_ratio','requests','impression','cpc', 'ctr','viewability','ratio1','ratio2','ratio3', 'ratio4','ratio5', 'y']:
plt.figure(figsize=(6,2))

plt.suptitle("Figure " + str(i) + ": Histogram and Box Plot of " + col)
BoxHistogramPlot(ad_removed[col])
plt.show()
i = 1 + i

<Figure size 432x144 with 0 Axes>
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<Figure size 432x144 with 0 Axes>
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We noticed that the price1, price2 and price3 variables have a lot of 0 value. This would not
be beneficial for modelling process if all these 3 variables are equal to zero at the same time.
Because, in reality ads has to cost something therefore, we should remove observations with all
these 3 variables equal to zero. The value of zero may indicate either organic reach or missing
price value. Since some algorithm can deal with NA values we replace 0 price with NA, further
processing will be considered for models that cannot handle missing values. We do this in order
to keep as many observations as possible.

In [28]: ad_removed.loc[ad_removed.price1==0,'price1']=np.nan

In [29]: ad_removed.loc[ad_removed.price2==0,'price2']=np.nan

In [30]: ad_removed.loc[ad_removed.price3==0,'price3']=np.nan

In [31]: ad_removed['price1'].describe()

Out[31]: count 102455.000000
mean 0.810484
std 1.659465
min 0.010000
25% 0.050000
50% 0.150000
75% 0.740000
max 14.690000
Name: price1, dtype: float64
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We can apply log transformation to these variables since their distritutions are right-skewed
the we can observed their distribution again.

In [32]: ad_removed["price1"]=ad_removed["price1"].apply(np.log)
ad_removed["price2"]=ad_removed["price3"].apply(np.log)
ad_removed["price3"]=ad_removed["price3"].apply(np.log)

In [33]: ad_removed['price1'].plot(kind='hist',bins=30)
plt.legend()
plt.show()

In [34]: ad_removed['price2'].plot(kind='hist',bins=30)
plt.legend()
plt.show()
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In [35]: ad_removed['price3'].plot(kind='hist',bins=30)
plt.legend()
plt.show()
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We can see that the distributions of these three variables are much closer to a normal distribu-
tion after the log transformation, ignoring the zero values.

In [36]: from scipy.stats import boxcox

According to Google Ads, "An ad request is counted whenever your site requests ads to be
displayed. It is the number of ad units that requested ads. We report an ad request each time a
request was sent, even if no ads were returned and backfill ads were displayed instead." and "An
impression is counted each time an ad loads on a site. If you refresh the page, even if the same ad
loads, a new impression is counted." Therefore, it is reasonable to exclude the zero value for the
modelling process; since value zero here does not have any predicting value for advertisers. We
use the same approach as the prices values.

In [37]: ad_removed.loc[ad_removed.requests==0,'requests']=np.nan

In [38]: ad_removed.loc[ad_removed.impression==0,'impression']=np.nan

In [39]: from scipy.stats import boxcox

In [40]: ad_removed.requests= boxcox(ad_removed.requests, 0)
ad_removed['requests'].plot(kind='hist',bins=30)

plt.legend()
plt.show()
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In [41]: ad_removed.impression= boxcox(ad_removed.impression, 0)
ad_removed['impression'].plot(kind='hist',bins=30)

plt.legend()
plt.show()

For cpc: cost per click values, the same logic can be applied.

In [42]: ad_removed.loc[ad_removed.cpc==0,'cpc']=np.nan

In [43]: ad_removed.cpc= boxcox(ad_removed.cpc, 0)
ad_removed['cpc'].plot(kind='hist',bins=30)

plt.legend()
plt.show()
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For ctr: click through rate and viewability value of zero contain predictive values. For example,
some ads can have millions of impressions but no one clicks on it, this will male ctr equals to zero.
Similarly, when a user scrolls through a page the visibility of an add can be zero. In oreder, to use
transformation for these variables, add a constant, 1 to all the values.

In [44]: ad_removed.loc[ad_removed.ctr==0,'ctr']=np.nan
#ad_removed["ctr"]=ad_removed["ctr"].apply(np.log)
ad_removed.ctr= boxcox(ad_removed.ctr, 0)
ad_removed['ctr'].plot(kind='hist',bins=30)

plt.legend()
plt.show()

27



In [45]: ad_removed['viewability'].plot(kind='hist',bins=30)

plt.legend()
plt.show()
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The viewability is dominated by 0, therefore, we chose to create a new categorical vari-
ble"adSeen" based on the viewability. 0 is "not seen", (0,0.5] is "partly seen" and (0.5,1] is "seen"

In [46]: ad_removed['adSeen'] = pd.cut(ad_removed['viewability'], bins=[float('-Inf'),0, 0.5, 1,], labels=['not-seen', 'partly-seen', 'seen'])

In [ ]:

We now need to address the variable ad_area. Almost half of the data have larger than 1 values;
this could be the products of wrongly label the ratio between width and length. For example, a
banner ad would have width that larger than length and a half-page ad will have width to length
ratio less than 1. If this assumption is correct we can use the Google Ads size guideline from
https://support.google.com/adsense/answer/6002621?hl=en to copy up with new new variable
"addType". The range is based on the histogram of the variable ad_area and the top performing
ad sizes according to Google.

In [47]: ad_removed['adType'] = pd.cut(ad_removed['ad_area'], bins=[float('-Inf'),1.2,6,float('Inf')], labels=['half-page', 'regtangular', 'banner'])

In [48]: ad_removed['adType'].value_counts()

Out[48]: half-page 104048
banner 72737
regtangular 7893
Name: adType, dtype: int64

Since there is not much information regarding the ratio variables, as long as they are within
the stated normalised range. We’ll leave them for now; this is a result of the lack of the domain
knowledge regrading the data.

In [49]: ad_removed['y'].plot(kind='hist',bins=30)

plt.legend()
plt.show()
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In [50]: ad_removed["log_y"]=ad_removed["y"].apply(np.log)

In [51]: ad_removed['log_y'].plot(kind='hist',bins=30)

plt.legend()
plt.show()
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The target variable is normally distributed after a log transformation.

3.2 Multivariate Visualisation

3.2.1 Interaction between Categorical features and Target Feature

In [52]: ad_removed.dropna().boxplot(column='log_y',by='companyId',vert=False, figsize=(10,10),fontsize=10)
plt.xlabel('log of y')
plt.ylabel('company Id ')
plt.title('Relationship between company Id and log of y')
plt.show()
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We can see that companyId 157 and 126 achives more consistency when it comes to log of y;
this infers that they may have more effective strategy in ad spent.

In [53]: ad_removed['countryId'] = ad_removed['countryId'].astype('int64')
ad_removed.plot.scatter(y='countryId', x='log_y')
plt.xlabel('log of y')
plt.ylabel('Country Id ')
plt.title('Relationship between Country Id and log of y')
plt.show()

'c' argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with 'x' & 'y'. Please use a 2-D array with a single row if you really want to specify the same RGB or RGBA value for all points.

Once again, there is not much information regarding the countryId and the (log of) the target
variable. Some countries seem to have more consistent (log of ) y values than others, however, its
not very clear.

In [54]: ad_removed.dropna().boxplot(column='log_y',by='deviceType',vert=False, figsize=(10,10),fontsize=10)
plt.xlabel('log of y')
plt.ylabel('Device type')
plt.title('Relationship between deviceType and log of y')
plt.show()
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Device code 1 showed the lowest (log of) y values and device code 3 perform the best and also
is the most consistent one.

In [55]: ad_removed.dropna().boxplot(column='log_y',by='dow',vert=False, figsize=(10,10),fontsize=10)
plt.xlabel('Duration')
plt.ylabel(' ')
plt.title('Relationship between duration of last contact and outcome')
plt.show()
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The day of the week variable does not show much differnces among the options, we’ll drop
this variable from the modelling process

In [56]: ad_removed.dropna().boxplot(column='log_y',by='adSeen',vert=False, figsize=(10,10),fontsize=10)
plt.xlabel('log of y')
plt.ylabel(' ')
plt.title('Relationship between duration of last contact and outcome')
plt.show()

34



The new-ly created adSeen variables suggesting that ads that have been seen have higher (log
of) y values.

In [57]: ad_removed.dropna().boxplot(column='log_y',by='adType',vert=False, figsize=(10,10),fontsize=10)
plt.xlabel('Duration')
plt.ylabel(' ')
plt.title('Relationship between duration of last contact and outcome')
plt.show()
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The new adType variable showed that regtangular ads perform more consistent compare to
the other two.

3.2.2 Interaction between numeric features and Target Feature

In [58]: for col in ['price1', 'price2','price3','ad_area', 'ad_ratio','requests','impression','cpc', 'ctr','viewability','ratio1','ratio2','ratio3', 'ratio4','ratio5']:
plt.figure(figsize=(6,2))

ad_removed.plot.scatter(x=col, y='log_y')
plt.show()
i = 1 + i

'c' argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with 'x' & 'y'. Please use a 2-D array with a single row if you really want to specify the same RGB or RGBA value for all points.
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There are a few keys things to point out from the series of figures showed about.
Firstly, all price variables(price1, price2 and price2) showed that the (log of) prices and y values

do not suggest any linear relationships. The highest y values seem to appear round the area when
(log of) price is around 1.

Secondly, the ad_area variables suggests that there are three different groups, we’ve already
dealt with this previvously. (the logs of) The requests and impression appear to have to nega-
tive relationships with the y values. The y values drop as the (logs of) requests and impression
decrease.

As the(log of) cpc increases y value increases untill ( log of) cpc of around -1.8, then the y
values decease at the similar rate.

The (log of) ctr and the y values appear to have some positive linear relationship, as the (log
of) ctr increases the y values increases. However the variance of the y values also increase. ratio1
and ratio2 have slight positive linear relationships with y values; while ratio3 has a negative one;
ratio4 and ratio5’s relationships with y values are unclear.

In [59]: # Correlation Matrix Heatmap
f, ax = plt.subplots(figsize=(10, 6))
corr = ad_removed.corr()
hm = sns.heatmap(round(corr,2), annot=True, ax=ax, cmap="coolwarm",fmt='.2f',

linewidths=.05)
f.subplots_adjust(top=0.93)
t= f.suptitle('Ads Attributes Correlation Heatmap', fontsize=14)
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The heat map of correlations shows some interesting information, the all the prices and ctr are
positive correlated with y values; impression and requests have slight negative correlations with
y values.

All the prices are highly correlated to each other, we may need to consider a single variable to
replace these 3.

ad area and ad_ratio only have correlations with cpc and ctr respectively, however they have
little correlations with the y values.

ratio2,coutryId, ratio4 showed very little correlations with the y values. We’ll consider drop-
ping these variables for better modelling process. However, it is highly dependent on which
machine learning algorithms used.

3.3 Interactions between categorical variables, numeric variables and the target vari-
ables

In [60]: sns.relplot(x="log_y", y="price1", col="deviceType", data=ad_removed);
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In [61]: sns.relplot(x="log_y", y="price2", col="deviceType", data=ad_removed);

In [62]: sns.relplot(x="log_y", y="price3", col="deviceType", data=ad_removed);

In [63]: sns.relplot(x="log_y", y="requests", col="deviceType", data=ad_removed);
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In [64]: sns.relplot(x="log_y", y="impression", col="deviceType", data=ad_removed);

We can observe the negative correlations between requests and (log of) y is stronger in device 1
and 2. In addition, the negative correlation between impressions and (log of) y is clearer in device
1.

In [65]: sns.relplot(x="log_y", y="cpc", col="deviceType", data=ad_removed);

54



In [66]: sns.relplot(x="log_y", y="ctr", col="deviceType", data=ad_removed);

In [67]: sns.relplot(x="log_y", y="ratio1", col="deviceType", data=ad_removed);

In [68]: sns.relplot(x="log_y", y="ratio2", col="deviceType", data=ad_removed);

The positive correlations between ctr and (log of) y and cpc and (log of) y can be seen quite
clearly in all the devices. However, the variance of these relationships appear to be larger in device
1 and 2.
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In [69]: sns.relplot(x="log_y", y="price1", col="adSeen", data=ad_removed);

In [70]: sns.relplot(x="log_y", y="price2", col="adSeen", data=ad_removed);

In [71]: sns.relplot(x="log_y", y="price3", col="adSeen", data=ad_removed);

There is not much different between the group, this could be the results of the partions range;
further considerations should be taken during the modelling process.
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In [72]: sns.relplot(x="log_y", y="ctr", col="adSeen", data=ad_removed);

In [73]: sns.relplot(x="log_y", y="requests", col="adSeen", data=ad_removed);

In [74]: sns.relplot(x="log_y", y="impression", col="adSeen", data=ad_removed);

Once again, the negative correlations between impressions and requests with y exhibits clearly
in all groups. Partly-seen ads seem to have smaller varince
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In [75]: sns.relplot(x="log_y", y="cpc", col="adSeen", data=ad_removed);

In [76]: sns.relplot(x="log_y", y="ctr", col="adSeen", data=ad_removed);

Ads that has been seen appears to cost more; the positive correlation between cpc and (log of)
y is very clear here. Besides, ads that are partly seen showed smaller variance in ctr.

In [77]: sns.relplot(x="log_y", y="ratio1", col="adSeen", data=ad_removed);
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In [78]: sns.relplot(x="log_y", y="ratio2", col="adSeen", data=ad_removed);

In [79]: sns.relplot(x="log_y", y="price1", col="adType", data=ad_removed);

In [80]: sns.relplot(x="log_y", y="price2", col="adType", data=ad_removed);
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In [81]: sns.relplot(x="log_y", y="price3", col="adType", data=ad_removed);

The postive correlations are clear among all the the types of ads; regtangular ads showed
smallest variance.

In [82]: sns.relplot(x="log_y", y="ctr", col="adType", data=ad_removed);

Banner ads appears to perform best in click through rate.

In [83]: sns.relplot(x="log_y", y="cpc", col="adType", data=ad_removed);
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Regtangular ads appears to be the most cosistent in term in performance , where the correlation
between cpc and (log of) y in half-page ads exhibits largest variance comparing to the other types
of ads.

In [84]: sns.relplot(x="log_y", y="impression", col="adType", data=ad_removed);

In [85]: sns.relplot(x="log_y", y="requests", col="adType", data=ad_removed);

In general, all the correlations between (log of) y and the numeric variables appear to be more
obvious in some categories than others. The functionalities of the ratio-variables are not very
clear and they did not showed much correlations with the target variables. In additions, the ratio-
variables represent information regrading to the metrics; we will consider leave these ratios out
when using explainable algorithms such as decision tree.

4 Summary

In Phase 1, we have done a few manipulations to the data. We have made some educated guesses
and assumptions based on our own knowledge regarding Google Ads, however, proper expert
domain knowledge will improve the processing data tremendously.
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Firstly, the data has been cleaned, zero values in some of the variables were replaced with NA
for better visualisation. An additional step of marking them using a constant will be considered
in the next phase depends on which machine learning algorithm we use.

Secondly, transformations were done to some numeric variables including price1, price2,
price3, cpc, ctr and the target variables. Some of them displays normal distributions, which will
be beneficial for modelling process.

Thirdly, a portion of the data was left out for various of reason. We also construct 2 new
categorical variables adSeen and asType.

From the data exploration, we found that deviceType, adSeen,adType, price1,price2, price3,
requests,impression,cpc,ctr, viewability, ratio1 and ratio3 were potentially useful features in pre-
dicting the income classes.
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